
2022 Bulgarian IPhO Team Selection Test

Short Exam 1

Figure 1

Problem. Radial oscillations. Two identical point
masses A and B, each of mass m, are connected with a
light inextensible string. The string passes through an
opening in a horizontal table O. Mass A hangs below
the opening while mass B is placed on top the table at
a distance l0 from the opening. All friction is neglected.
The acceleration due to gravity is g.

(a) What initial velocity v0 should mass B be given so that it rotates in a circle around the
opening O? (1.0 pt)

(b) After mass B has been given this velocity v0, we attach an additional mass ∆m to mass
A. As a result, ball A will move downwards, pulling along the string. Find the length
of string l left on top of the table when A reaches its lowest point. (2.5 pt)

(c) If ∆m ≪ m, mass A will oscillate harmonically between its lowest and highest positions.
Find the oscillation period T . (1.5 pt)

The problem is worth 5 points.
Time: 60 minutes.

Short Exam 2

Problem. Binary phase diffraction grating. Consider a slab of thickness h made up
of alternating strips of width b and refractive indices n1 and n2, respectively. The width of
the whole grating is 2Nb, where N ≫ 1 is an integer. A parallel monochromatic beam of
wavelength λ is normally incident on the plate. We observe the diffracted parallel beams at
different angles Θ to the normal of the plate. Neglect reflections at the surfaces of the plate.

(a) What is the minimum thickness hmin so that the intensity at the centre of the diffraction
pattern is zero, I(Θ = 0) = 0? In what follows, work with a diffraction grating of
thickness hmin.

(b) Find the angle of the first diffraction maximum Θ1. You can express your answer as a
trigonometric function of Θ1.

(c) Find the angle of the second diffraction maximum Θ2. You can express your answer as
a trigonometric function of Θ2.

(d) Find the general intensity pattern of the diffraction grating I(Θ).

The problem is worth 5 points.
Time: 60 minutes.
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Short Exam 3

Problem. Throttling. Throttling is a process in which gas is forced through a porous medium
that eliminates its macroscopic motion. This is usually carried out in thermally insulated sys-
tems. The most notable example of throttling is called a Joule-Thomson process, as shown on
Figure 2.

Figure 2

A fixed porous plug divides a thermally insulated cylinder into two parts. Initially the gas is to
the left of the plug, and it has volume Vi, temperature Ti, and pressure Pi. After the gas passes
to the right of the plug, its pressure is Pf < Pi. The pressures are kept constant throughout
the whole process. As a result, the gas experiences a temperature change ∆T = Tf − Ti and a
pressure change ∆P = Pf − Pi. This is called the Joule-Thomson effect.

(a) Using the first law of thermodynamics, find an equation between the thermodynamic
variables of the gas in the initial (i) and the final (f) state. Neglect the energy of
macroscopic motion. (2.0 pt)

(b) Consider a gas described by the van der Waals equation of state,(
P +

ν2a

V 2

)
(V − νb) = νRT.

Show that a gas with a = 0 is always heated up by the Joule-Thomson process. Find the
temperature increase of the gas following its expansion. Assume that νb

V
≪ 1. (1.5 pt)

(c) Show that a gas with b = 0 is always cooled down by the Joule-Thomson process when
expanding. Find the temperature decrease of the gas. (1.5 pt)

The problem is worth 5 points.
Time: 60 minutes.
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Theoretical Exam

Problem 1. Car. A car of mass m = 1000 kg moves with speed v0 = 30m/s on a straight
horizontal road. The driver disengages the transmission and the car starts to slow down, as
given by

v(t) =
v0

1 + t
τ

,

where τ = 60 s is a constant.

(a) Find the distance s1 the car has moved until its velocity decreases to v1 = 20m/s.

(b) After the car has reached speed v1, the driver engages the transmission again. Find the
useful power of the engine P1 that is necessary to maintain uniform motion at this speed.

Problem 2. Accelerating rocket. A rocket has initial mass m0. It accelerates from rest in
outer space without any gravitational forces acting on it. The payload of the rocket is 0.1m0,
and the remaining 0.9m0 is fuel. The fuel is ejected with a velocity u = 3000m/s relative to
the rocket in a direction opposite that of its motion. The fuel supply is automatically adjusted
so that the acceleration of the rocket remains constant at g = 9.8m/s2 (for the convenience of
the passengers). Find the distance L that the rocket covers before all its fuel is exhausted.

Problem 3. Electron beam. An electron beam enters a circular region of radius a = 1.0 cm.
In this region there is a magnetic field B = 0.11T parallel to its axis. The initial velocity of
the electrons is perpendicular to the field lines and is directed towards the centre of the region,
as shown on Figure 3. After exiting the region, the electrons have deviated at an angle θ = 64◦

with respect to their initial direction. Find an expression for the velocity of the electrons v.
Calculate v.

Figure 3

Problem 4. Five charges on a sphere. Five identical like charges q are constrained to
the surface of a sphere of radius r. We search for the configuration which minimises their
electrostatic potential energy.

(a) One option is for 3 of the charges to form the largest possible equilateral triangle, while
the other 2 charges complement the triangle to a regular triangular bipyramid (that is,
two regular triangular pyramids with a common base. Find the potential energy E1 of
this arrangement.

(b) A second option is for 4 of the charges to form a square, with the fifth charge comple-
menting the square to a regular square pyramid. Find the potential energy E2 of this
arrangement in terms of some angle that specifies the pyramid.
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(c) Find this angle with an accuracy that allows for a good estimate of the minimum poten-
tial energy of such an arrangement. Which arrangement has a lower potential energy:
the first one or the second one?

Problem 5. RC filter. An AC circuit is shown on Figure 4. The input voltage is Uin(t) =
Uin0 cos (ωt). At the output we measure a voltage Uout(t) = Uout0 cos (ωt+ φ). Work in the
special case R1 = R2, C1 = C2.

(a) Find a formula for the ratio K(ω) = Uout0/Uin0.

(b) What is the value of ω which maximises K(ω)?

(c) Find the maximum K.

Problem 6. Thermal screens. Two infinite parallel planes are maintained at constant
temperatures T0 and TN+1 in vacuum. We place another N infinite parallel planes between the
first two. The bodies reach equilibrium temperatures T1, T2, . . . , TN . Treat all the planes as
blackbodies.

(a) Let the heat exchange rate between the bodies at the two ends be P0 when there are no
bodies between them, and PN when there are N bodies between them. Find the ratio
P0/PN .

(b) Find a formula for the temperature of the k-th body Tk (for all k ∈ [1, N ]).

Figure 4 Figure 5

Problem 7. Thermodynamic process. A gas is compressed in such a way that the heat
released to the surroundings is equal in magnitude to the change of the internal energy.

(a) Find the heat capacity of such a process.

(b) Find this heat capacity for a van der Waals gas in terms of its pressure P and volume
V .

Problem 8. Liquefaction of helium. A thermally insulated vessel is filled with helium gas
at temperature T0 = 10K. The gas is slowly expelled through a nozzle until the pressure in
the vessel is P1 = 1atm and the temperature is T1 = 4.2K. In the end there is only liquid
helium in the vessel. The enthalpy of boiling for helium at 4.2K is r = 84 J/mol. Find the
initial pressure P0 of the gas in the vessel. Treat the helium gas as ideal. Assume that the gas
expulsion is quasistatic.

Problem 9. Quantum gas. Estimate the characteristic temperature T0 at which the quan-
tum properties of helium gas become significant. The density of the gas is ρ = 0.18 g/cm3. The
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molar mass of helium is µ = 4g/mol.

Problem 10. Quantum vortices. When a cylindical vessel full of superfluid liquid helium
is rotating about its axis, vortices will form in its volume, as shown on Figure 6. The velocity
of the atoms in a vortex is given by

v =
K

r
,

where r is the distance to the axis and the constant K is called the circulation quantum of the
vortex. Calculate the minimum K.

Figure 6

Constants:

Boltzmann constant kB 1.38× 10−23 J/K
Gas constant R 8.31 Jmol−1K−1

Avogadro constant NA 6.02× 1023mol−1

Elementary charge e 1.602× 10−19C
Coulomb’s constant kC 8.99× 109Nm2C−2

Vacuum permittivity ε0 8.85× 10−12 F/m
Vacuum permeability µ0 4π × 10−7N/A2

Speed of light in vacuum c 2.998× 108m/s
Stefan-Boltzmann constant σ 5.67× 10−8Wm−2K−4

Wien’s constant b 2.90× 10−3mK
Electron mass me 9.11× 10−31 kg
Proton mass mp 1.67× 10−27 kg
Neutron mass mn 1.67× 10−27 kg
Planck constant h 6.626× 10−34 J s
Reduced Planck constant ℏ 1.055× 10−34 J s

Each problem is worth 3 points.
Time: 5 hours.
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Experimental Exam

Problem 1. Geiger-Müller counter.

The Geiger-Müller counter is the simplest detector of ionising radiation (Figure 7). It consists
of a thick cylindrical insulated metal tube (cathode C) and a thin co-axial wire (anode A). A
high voltage is applied between the electrodes. The tube is filled with rarefied gas. At one of
its ends there is a thin metal window through which the high energy particles (alpha or beta
radiation) can enter the tube. Each particle that enters the tube ionises the gas, which leads
to a short current pulse across the circuit. This gives rise to a voltage at the load. This voltage
is then registered by a digital pulse counter.

Figure 7

The time interval in which a current flows in the circuit due to a particle is called the dead
time τ of the counter. If another particle enters the tube during this period, its pulse will
‘merge’ with the previous one and this particle will not be counted. This is why the number of
detected particles N in a time interval t is less than the actual number of particles that have
entered the tube. The number N is given by

N =
Φt

1 + Φτ
, (1)

where Φ is the particle flux, i.e. the average number of particles entering through the window
per unit time. The flux Φ is measured in s−1.

In this problem we will study a Geiger-Müller counter with a window radius R = 1.0 cm. When
using the simulation software gmcounter.exe1 you can set a measurement time t ∈ [10 s, 100 s]
in steps of 1 s. If you enter a decimal, it will be rounded to the nearest integer.

Task 1. Determining the dead time of the counter.
You are given five sources of beta radiation with activities2 A = 2.1, 5.0, 10.3, 15.2, 17.9Bq.
Assume that the sources are pointlike and isotropic (i.e. radiating equally in all directions).
The sources can only be studied separately. They are placed right next to the window of the
tube. The half-lives of the sources are much longer than the duration of the experiment, so the
activities of the sources may be assumed constant.

1You can find the program in my archives, at bg/2022/2022-IV/exp.
2The activity of a source is the average number of radioactive decays in the source, A = dN

dt . The SI unit
for activity is the becquerel (Bq), which is equivalent to s−1, i.e. one decay per second.
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Select Part 1 in the main menu of the program. A list of sources from 1 to 5 will appear on
the screen. If you press 0, you will return to the main menu. After selecting a source, you need
to enter the measurement time t. When the measurement is over, the program outputs the
number of detected pulses N . Then the program returns to the source selection menu.

(a) For each source measure the number of detected pulses at various time intervals.

(b) Present your data in tabular and graphical form. Use auxiliary variables for which a
linear dependence is expected.

(c) Find the dead time of the counter and estimate your error.

Note: Bear in mind that the number of registered particles N is subject to unavoidable random
fluctuations about some mean value N̄ . The expected relative deviation from the mean value
is given by

|N − N̄ |
N̄

∝ 1√
N̄
.

This could help you select the measurement time so that the measurement error is within cer-
tain bounds.

Task 2. Determining the half-life of uranium.
You are given a radioactive source containing m = 5mg of the uranium isotope 238

92U. Uranium-
238 is subject to alpha decays with a very long half-life, and the amount of uranium remains
constant throughout the experiment. The source can be assumed pointlike and isotropic. The
source is located on the axis of the counter. It can be placed at distances d ∈ [0.5 cm, 5.0 cm]
from the window in steps of 0.1 cm (1mm).

Select Part 2 in the main menu of the program. Here you can set the measurement time t (in
seconds) and the distance d between the window and the source (in centimetres). To return to
the main menu, enter a negative distance or a negative measurement time.

(a) Using the law of radioactive decay, derive a formula which relates the activity of the
source A to the total mass of the radioactive isotope m. The formula may include
the molar mass of the isotope µ, its halflife T1/2, and the Avogadro constant NA =
6.02× 1023mol−1.

(b) Using measurements (simulations) at different distances d, find the range L of alpha
particles in air. Find the kinetic energy E of the alpha particles released by the decay
of uranium. Use the formula

L/cm = 0.3(E/MeV)3/2.

(c) Using measurements (simulations) at different distances d < L, find the activity of the
source A.

(d) Using your data, find the half-life T1/2 of 238
92U in years, and estimate your error.

Hint: The solid angle Ω subtended by a cone with an angle θ between its axis and its generatrix
(Figure 8) is

Ω = 2π(1− cos θ).

The solid angle that corresponds to an entire sphere (i.e. all space) is 4π sr (steradians).
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Figure 8

Problem 2. External photoemission.

Photoemission from a metal is studied using the circuit on Figure 9. The light source is a
mercury lamp. A monochromator filters its light to produce monochromatic light of different
wavelengths. This light is incident on the cathode of an evacuated tube. You are given mea-
surements of the photocurrent at various potential differences U across the electrodes. The
measurements are taken at 5 different wavelengths λ. Two values for the power of the light P
have been used for each wavelength.

Figure 9

(a) Find the work function A of the cathode used in the experiment (in eV). Use the data
in the table and plot the relevant graph. (7.0 pt)

(b) The quantum efficiency QE of the photoelectric effect is defined as the ratio between the
number of emitted electrons and the number of photons incident on the cathode. Using
the data in the table, plot a graph of the quantum efficiency QE against the wavelength
of the monochromatic light λ (in nm). At what wavelength λQE=0 does the quantum
efficiency become zero? (7.0 pt)

(c) Using the data for the work functions A (in eV) of different chemical elements, determine
the metal at the cathode. (1.0 pt)
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Each problem is worth 15 points.
Time: 5 hours.
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