
2011 Bulgarian IPhO Team Selection Test – Solutions

Short Exam 2

Problem. A circuit consists of a battery of EMF E, a capacitor C, a resistor R, and an open
switch, all in series. At time t = 0 the switch is closed.

(a) Find the magnitude I1(0) of the initial current, the time dependence of the current
I1(t), and the total heat Q1 dissipated at the resistor until the capacitor is fully charged.

(2.0 pt)

The capacitor is discharged and the resistor is replaced by a nonlinear element with an I-V
curve I = βU3/2, where β is a constant. At time t = 0 the switch is closed.

(b) Find the magnitude I2(0) of the initial current, the time dependence of the current
I2(t), and the total heat Q2 dissipated at the nonlinear element until the capacitor is
fully charged. (3.0 pt)

Solution. (a) Initially the charge q on the capacitor is zero, likewise for its voltage. The
voltage loop rule for the circuit is

E − q

C
− IR = 0.

Initially we just have E − I1(0)R = 0, or I1(0) =
E
R
. In general, I = dq

dt
, so

dq

dt
+

(
1

RC

)
q =

E

R
.

The general solution is q(t) = Ae−
t

RC +CE, where A is an arbitrary constant. Using the initial
condition q(0) = 0, we obtain

q(t) = CE
(
1− e−

t
RC

)
⇒ I(t) =

(
E

R

)
e−

t
RC .

We can now find the dissipated heat Q1 by integrating
∫∞
0

I2R dt, but the algebra can be
avoided. The point is that Q1 is equal to the total energy input from the battery, minus the
energy stored in the capacitor in the final state (when its charge is q0 = CE). Then,

Q1 = q0E − q20
2C

=
CE2

2
.

(b) Let the voltage on the nonlinear element be UN , so that the current in the circuit is

I = βU
3/2
N . As in the previous part, initially q/C = 0, so UN = E, and therefore I2(0) = βE3/2.

The general voltage loop rule is

E − q

C
− UN = 0.

We want to involve the current I, so we differentiate this equation to get

− I

C
− dUN

dt
= 0.

Now UN = (I/β)2/3, hence
dI

dt
= −

(
3β2/3

2C

)
I4/3.
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After integrating, we are left with

I(t) =

(
B +

β2/3

2C
t

)−3

,

where B is a constant. After imposing the initial condition for the current,

I(t) = β

(
1√
E

+
βt

2C

)−3

.

The dissipated heat can now be found by integrating
∫∞
0

UNI dt, but we can save ourselves the

work by using the same trick as before. The answer is, again, Q2 =
CE2

2
.

Theoretical Exam

Problem 4. We wish to make a solenoid of inductance L = 1mH and length l = 1m. The
diameter of the solenoid is d ≪ l.

(a) Find the length of the wire x that we will need. (1.5 pt)

(b) If the wire is made of copper and has a resistance of R = 1.7Ω, find the mass of the
solenoid m. (1.5 pt)

The density of copper is ρm = 8.9 g/cm3 and its resistivity is ρR = 17 nΩm.

Solution. (a) The inductance of the solenoid is L = Φ/I, where Φ is the magnetic flux through
its interior when it carries current I. Let the solenoid have N turns. From Ampère’s circuital
law, the magnetic field inside the solenoid is approximately uniform and equal to µ0NI

l
. The

flux through a single turn is µ0NI
l

πd2

4
, but there are N of those, so the total flux is Φ = µ0N2I

l
πd2

4
.

The inductance is then L = µ0N2

l
πd2

4
. At the same time, the total length of the wire is x = Nπd.

We can express this length as

x =

√
4πlL

µ0

= 100m.

(b) Let the cross-section of the wire be Sw. The resistance and mass of the wound wire are
respectively given by

R =
ρRx

Sw

and m = ρmSwx.

We multiply these to cancel Sw, and we get

m =
4πρmρRlL

µ0R
= 0.89 kg.

Problem 5. A particle of massm and charge q is located at the origin of a Cartesian coordinate
system at time t = 0. Around the particle there is a constant homogeneous magnetic field
B along Oz and an oscillating homogeneous electric field E(t) = E0 sin(ωt) along Ox, with
ω = qB

m
. Assume that the particle moves along an Archimedean spiral given by r(φ) = Aφ in

polar coordinates. Here A is a constant and φ is measured starting from Ox. If the particle
moves with a constant angular velocity ω, find the increase in the radius vector per turn.
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Solution. Let E(t) = E0 sin (ωt)x̂ and B = Bẑ. The total force on the particle is F =
qv ×B+ qE, which has components

Fx = m
dvx
dt

= qE0 sin (ωt) + qvyB

Fy = m
dvy
dt

= −qvxB.

We differentiate the equation for Fx and then substitute the result for dvy
dt

from the Fy equation.
This way we get an equation in vx only:

d2vx
dt2

+ ω2vx =

(
E0

B

)
ω2 cos (ωt).

Now the idea is to find vx, then get vy, then integrate the velocities to obtain x(t) and y(t),
and thus derive r(t). However, the differential equation at hand is rather difficult. It represents
driven harmonic oscillations at resonance, meaning that the driving term’s frequency is the
same as the natural frequency of the system ω. In this case, a trial solution of the sort
vx = C cos (ωt+ θ) will not work. Instead, the problem statement wants us to try something
else, namely r(t) = A(ωt), which corresponds to x(t) = A(ωt) cos (ωt) and1

vx(t) = Aω(cos (ωt)− (ωt) sin (ωt)).

Our goal is to determine a constant A which satisfies the differential equation for vx. To check
this, we will also need the second derivative of vx. Using the shortcut dvx

dt
= ω dvx

d(ωt)
, we can

quickly find
v̇x = Aω2 (−2 sin (ωt)− (ωt) cos (ωt)) ,

v̈x = Aω3 (−3 cos (ωt) + (ωt) sin (ωt)) .

After we plug this into the differential equation, the nasty terms cancel, and we have

−2Aω cos (ωt) =

(
E0

B

)
cos (ωt),

from which we extract A = −mE0

2qB2 . The trajectory of the particle is then

r(t) = −E0t

2B
.

It is completely fine to have a negative r(t). For example, if r = −2m at φ = 30◦, this just means
that the particle is at a distance of 2m from the origin in a direction φ′ = 30◦ + 180◦ = 210◦

from the x-axis. Back to the problem at hand. In a single turn φ increases by 2π. Since the
distance to the origin is r = Aφ, the increase in the radius vector’s magnitude per turn will be

∆r = 2π · |A| = πmE0

qB2
.

Problem 6. A parallel beam of monochromatic light (wavelength λ = 500 nm) is normally
incident on a diffraction grating. The period of the grating is d ≫ λ. A convex lens of focal
length f = 1m is placed parallel to the grating. A diffraction pattern is then observed on a
screen in the focal plane of the lens. We now rotate the diffraction grating at an angle α with
respect to an axis parallel to the slits. The new fourth order maximum is now observed where
the fifth order maximum originally was.

1 Note that vx(0) ̸= 0. In the original problem statement the particle is initially at rest, which makes the
problem overdetermined.
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(a) Find the angle α. (1.0 pt)

(b) Given that the fifth order maximum has shifted by ∆l = 12.5mm along the screen due
to the rotation, find the period of the grating d in micrometres. (1.0 pt)

(c) The screen is L = 20 cm wide and positioned symmetrically with respect to the optical
axis. Find the number of maxima N that will be observed on the screen after the
rotation. (1.0 pt)

Solution. (a) In the initial setup, all rays that diffract at an angle θ form a parallel beam
which is focused into a single point on the screen (because the screen is in the focal plane).
Any two rays from adjacent slits acquire an optical path difference of d sin θ at the grating.
Since there are many such pairs, the only way to get a maximum on the screen is for all rays to
stay in phase, i.e. d sin θ = nλ for integer n. For a given n, we call this the n-th order maximum.

AA

BB

CC

AA

BB

SS

TT

After we rotate the grating by an angle α, the optical path difference for the beam at an angle
θ will change to d(sin (θ + α)−sinα). As per the problem statement, for some angle θ5 we have

d sin θ5 = 5λ,

d(sin (θ5 + α)− sinα) = 4λ.

Since d ≫ λ, the angle θ5 is expected to be very small. The same cannot be said for α, but we
are still allowed to approximate sin θ5 + α ≈ sinα + θ5 cosα. Thus

dθ5 = 5λ,

dθ5 cosα = 4λ.

We divide these to find cosα = 4/5, or α = 36.9◦ . For an exact value of α, we’d also need the
data from (b). Working out a system of three equations numerically, we could obtain α = 35.5◦.
Evidently our approximate value for α isn’t far from the exact answer.

(b) Let the new direction of the fifth order maximum correspond to an angle θ′5. Then,

sin (θ′5 + α)− sinα = sin θ5 =
5λ

d
.

Since λ/d is small, the difference between sin (θ′5 + α) and sinα is also small, meaning θ′5 is a
small angle too. We can then use sin (θ′5 + α) ≈ sinα+θ′5 cosα to get θ′5 cosα = θ5, or θ

′
5 =

5
4
θ5.

From the problem statement we gather that

∆l = f(tan θ′5 − tan θ5) ≈ f(θ′5 − θ5),
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which implies ∆l = 1
4
fθ5. However, we also have θ5 =

5λ
d
, so

d =
5λf

4∆l
= 50 µm.

(c) Only the beams travelling at less than a critical angle θlim will get focused on the screen.
Tracking the rays passing through the centre of the lens, we find

tan θlim =
L/2

f
⇒ θlim = 5.7◦.

After the rotation, angles θn corresponding to maxima obey

sin (θn + α)− sinα =
nλ

d
.

The function on the left hand side increases with θn, which may vary between −θlim and +θlim.
Substituting these limits for θ, we find n = −8.3 and n = 7.6, respectively. This means that
the maxima which fit on the screen start from n = −8 and end at n = 7. This is a total of
N = 16 maxima. The number is still the same if we work with the exact values for α and d.
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Experimental Exam

Problem 1. Oscillations of a wooden block.

Equipment:
Stand with pinch (to be used as a pivot for a pendulum), wire, wooden block, pliers, stopwatch,
ruler, blank paper, graph paper.

The longest side of the block is denoted by a, the middle length one by b, and the shortest one
by c. The mass of the block m is written down on the block itself. A hook with a screw thread
can be inserted into holes on the surfaces of the block. This allows the block to oscillate about
different axes. Denote the axes about which the block oscillates by [100] for the axis parallel
to a, [010] for the axis parallel to b, and [001] for the axis parallel to c.

The aim of this problem is to calculate the acceleration due to gravity g (10 pt) and the torsion
coefficient of the wire D (5 pt). The two tasks are independent.

In order to find g you will need to study the period of rotational oscillations T of the pendulum
about a horizontal axis which is perpendicular to one of the block’s surfaces. The period is
given by the formula

T = 2π

√
I

mgd
(
d
l
+ 1

) ,
where l is the length of the wire, d is the distance between the end of the wire and the centre
of mass of the block, m is the mass of the block, and I is the moment of inertia of the block
with respect to the axis of rotation. The moment of inertia is given by

I =
1

12
m(a2i + a2j),

where ai and aj are the lengths of the edges perpendicular to the axis of rotation (i.e. a and b,
or a and c, or b and c).

(a) Take enough useful measurements. Present them in a table and explain how they were
obtained. (4.5 pt)

(b) State the variables which, when plotted, can easily give you g. (0.5 pt)

(c) Plot the relevant graph. (3.0 pt)

(d) Using the graph, determine the acceleration due to gravity g. (1.0 pt)

(e) Estimate your error in finding g. (1.0 pt)

In order to determine the torsion coefficient of the wire D you will need to study the period of
rotational oscillations T of the pendulum about an axis coinciding with the wire. Their period
is given by

T = 2π

√
I

D
,

where I is the moment of inertia about the axis of rotation (given above).

(f) Take enough useful measurements. Present them in a table and explain how they were
obtained. (2.25 pt)

(g) State the variables which, when plotted, can easily give you D. (0.25 pt)

(h) Plot the relevant graph. (1.75 pt)

(i) Using the graph, determine the coefficient of torsion of the wire D. (0.5 pt)
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(j) Estimate your error in finding D. (0.25 pt)

Call the examiner in case of any technical difficulties.

Note: Do not write on the block!
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